Contents

CHAPTER 1 Machanics of a Particle

- 1.1 Introduction
- 1.2 Linear Momentum
- 1.3 Angular Momentum
- 1.4 Torque
- 1.5 Work
- 1.6 Power
- 1.7 Kinetic Energy
- 1.8 Conservative Forces
- 1.9 Potential Energy
- 1.10 Conservation theorem for a Particle
- 1.11 Solved Examples
- 1.12 Questions

CHAPTER 2

Mechanics of a System of Particles

2.1	Centre of Mass
2.2	Motion of Centre of Mass
2.3	Conservation of Linear Momentum
	of a System of Particles
2.4	Conservation of Angular Momentum
	of a System of Particles
2.5	Conservation of Energy of a System
	of Particles
2.6	Constraints
2.7	Generalised Co-ordinates
2.8	Configuration

2.9 Generalised	Velocities
-----------------	------------

- 2.10 Principle of Virtual Work
- 2.11 D'Alambert's Principle
- 2.12 Solved Examples
- 2.13 Questions

CHAPTER 3

Mechanics of a Rigid Body

3.1	Prolegomenon
3.2	Generalised Co-ordinates for Specifying
	the Configuration of a Rigid Body in Space
3.3	Dynamics of a Rigid Body
3.4	Relations Between Linear Motion and
	Rotary Motion
3.5.	Rotational Inertia (Moment of Inertia)
3.6	Equations of Motion of a Rotating
	Rigid Body
3.7	Radius of Gyration
3.8	Kinetic Energy of Rotation
3.9	Body of Circular Symmetry Rolling
	Down an Inclined Plane
3.10	Physical Significance of Moment of Inertia
3.11	Theorems on Moment of Inertia
3.12	Moment of Inertia of a Solid Cylinder
3.13.	Moment of Inertia of a Hollow Cylinder
3.14.	The Precessional Motion of a Top
3.15.	Newton's Laws for Rotational Motion
3.16.	Work, Power and Energy
3.17.	Inertial Frame of Reference
3.18	Rotating Frames of Reference
3.19.	The Coriolis Force
3.20	Effects of Centripetal Force
3.21	The Effects of Coriolis Force

3.22 Solved Examples

CHAPTER 4

Lagrangian Formulation

4.1	Lagrange's Equations
4.2	Lagrange's Equation for a Fully
	Conservative System
4.3	Lagrange's Equation for a System
	Which is Partly Conservative and
	Partly Non-conservative
4.4	Simple Applications of Lagrangian
	Formulation
4.5	Examples of Non-conservative Systems
4.6	Examples of Conservative Systems
4.7	Solved Examples
4.8	Questions

CHAPTER 5

The Hamiltonian Formulation

5.1	Configuration space
5.2	Hamilton's Principles
5.3	Advantages of Hamiltonian Formulation
5.4	The Hamiltonian Function, H
5.5	Hamilton's Equations
5.6	Physical Significance of the Hamiltonian
	Function
5.7	Utility of Hamilton's Equations
5.8	Derivation of Lagrange's Equation from
	Hamilton's Principle
5.9	Conservation Theorems and
	Symmetry Propertie
5.10	Cyclic Co-ordinate
5.11	Conservation Theorem for Generalised

Momentum	for	Cyclic	Co-or	diantes
----------	-----	--------	-------	---------

- 5.12 Routh's Procedure of Solution
- 5.13 Conservation Theorem for Linear Momentum
- 5.14 Conservation of Angular Momentum
- 5.15 Conservation of Energy
- 5.16 Applications of Hamiltonian Equations
- 5.17 Questions

CHAPTER 6

The Two Body Central Force Problem

6.1	Reduction of Two Body Problem to Equivalent One Body Problem
6.2	The Equation of Motion and First Integrals
6.3	The Kepler Problem: Inverse
	Square Law of force
6.4	Deduction of Kepler's Laws
6.5	The Virial Theorem
6.6	Scattering in a Central Force Field
6.7	Rutherford Scattering: Hyperbolic Orbits
6.8	Solved Examples
6.9	Questions

CHAPTER 7

Gravitation

7.1	Kepler's Laws of Planetary Motion
7.2	Newtion's Law of Gravitation
7.3	Gravitational Attracton and Potential
7.4	Connection Between Attraction and
	Potential
7.5	Special Cases of Attractions
7.6	Special Cases of Potential
7.7	Compound Pendulum
7.8	Bar Pendulum

7.9	Kater's Pendulum
7.10	Bessel's Theory
7.11	Errors in the Compound Pendulum
	and their Remedies
7.12	Merits of a Compound Pendulum
7.13	Demerit
7.14	Solved Examples
7.15	Questions
Bibliography	
Index	